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Abstract 
A practical application of a simple and economical 

solution to landslide susceptibility zonation using a 

geographic information system (GIS) was performed in 

Woomyeon Mountain, Seoul, Korea. The regional, 

physically based stability model of TRIGRS was used as 

the landslide susceptibility analysis. The accuracy of 

the model results depends primarily on a detailed 

knowledge of the study site and on the quality of the 

input parameters. However, the input data for the 

model is difficult to obtain because it not only requires 

test-based results but also spatial data.  

 

An alternative application method for a physically 

based model in wide area using either GIS-based soil 

textures or geology maps is proposed for landslide 

susceptibility zonation. From a spatial database, the 

input data for the TRIGRS model including the material 

strength and hydraulic properties were extracted. The 

validation results exhibited satisfactory agreement 

between the calculated susceptibility zonation using 

different input layers and the existing landslide location 

on the landslide inventory. The use of these types of 

spatial maps linked with suggested geotechnical 

information enables reasonable estimation of the 

regions susceptible to landslides. Although the accuracy 

of the proposed model needs improvement, this 

approach is very useful for preliminary spatio-temporal 

assessments over large areas. 
 
Keywords: Landslide, GIS, TRIGRS, soil texture, geology, 

database. 

 

Introduction 
In many countries, the yearly loss of property and life 

generated by landslides is larger than that from other natural 

hazards including earthquakes, floods and wind storms.
11

 In 

total, more than 500,000 people died as a result of landslides 

in the 20th Century.
34

 Korea is also prone to shallow 

landslides involving colluvium and these often mobilize into 

destructive debris flows.
17

 Shallow landslides are typically 1-

3 m deep and often occur at the boundaries between the 

colluvium and the underlying more solid parent rock.
36

 In 

most areas of Korea, the thickness of the colluvium is 

generally less than 2 m due to the relatively shallow depth of 

the bedrock and hence shallow landslides are recurrent 

problem. Furthermore, the climate of Korea is typical of the 

Indian Ocean monsoon areas with significant seasonal 

precipitation.
16

  

 

Thus, rainfall-triggered landslides cause extensive damage to 

people and to property. Due to the mountainous terrain with a 

shallow layer of colluvium and the associated weather 

conditions, landslides are hazard across most of Korea. 

Moreover, the socio-economic impact has become much 

higher than before as a result of the increased population 

levels in the hazardous zones. Therefore, landslide 

susceptibility assessment is a crucial issue in remedying this 

problem. 

 

In order to understand when and where rainfall-induced 

landslides have occurred in mountainous regions and how the 

topographic, geotechnical and hydraulic parameters affect the 

initiation of landslides and how they might be used to predict 

the landslides, models that adopt both empirical and 

deterministic approaches have been used. There are four 

different approaches to the assessment of landslide hazards: 

(1) landslide inventory-based probabilistic model, (2) 

heuristic model that can be either a detailed 

geomorphological mapping
5
 or an indirect qualitative map 

combination,
1,41

 (3) statistical model that can be either a 

bivariate
35

 or logistic regression
24

 and (4) deterministic 

model.
6,11,44

  

 

Among these models, the heuristic approach incurs 

subjectivity and is heavily dependent on the personal 

experience and knowledge of the experts involved.
46

 In the 

statistical approach, these models cannot model nonlinear 

relationships and they also depend on the quantity and quality 

of accessible information and subjectivity of the map 

builder.
27

 In contrast, the physically based and deterministic 

models are more objective and are frequently used for 

specific catchments because there are physical descriptions 

that can be used to inform the mathematical equations of the 

slope failure processes. Numerous models have developed 

e.g. SINMAP, SHETRAN, PROBSTAB, PISA, GEOtop-FS, 

and TRIGRS: this work focuses on the TRIGRS model. In 
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particular, simulations that use TRIGRS are very applicable 

to regions such as Korea which is prone to shallow rainfall-

induced landslides.
2,3 

 

The Transient Rainfall Infiltration and Grid-based Regional 

Slope-stability (TRIGRS) model is written in FORTRAN 

code based on Iverson’s
14

 linearized solution of the Richards 

equation and the extension of that solution. The TRIGRS 

model, used for either saturated or unsaturated soils, can 

improve the effectiveness of the susceptibility analysis 

through considering the transient effects of varying rainfall 

on the conditions that affect the slope stability. The model 

has been used successfully around the world for 

quantitatively evaluating rainfall-triggered landslides.
6,10,16, 

27,29,30,36,37,39,44
 

 

The TRIGRS model which is a deterministic model is based 

on calculating the safety factor. Deterministic models that 

provide the best quantitative information on landslides are 

more reasonable approaches for land susceptibility 

mapping.
40

 However, applying the models at a regional scale 

incurs difficulties in the availability and validation of data in 

large spatial data sets as input parameters.
34

 Therefore, an 

alternative must be determined in order to resolve these 

problems. The TRIGRS model includes various input data 

such as time-varying rainfall, topographic characteristics, soil 

depth, material strength and hydraulic properties.
2,3

  

 

However, collecting these input data from field investigations 

or laboratory tests is difficult particularly on a regional scale. 

Moreover, almost all natural soils are highly variable in their 

properties and are rarely homogeneous. For these reasons, an 

improvement or alternative to obtaining the input parameters 

for wide areas is required in the prediction of shallow 

landslides. Using the characteristic factors related to 

landslide initiation such as the soil texture, geology, 

topographic type, soil drainage, soil type and land use as an 

indirect method can be an alternative method because these 

input data are readily available for the whole of Korea from 

the relevant national research institutes.
11 

 

Soil texture is a term commonly used to designate the 

distribution proportion of the different sizes of soil particles.
4
 

That is, it describes the relative proportion of the different 

sizes of individual mineral particles, sand, silt and clay, 

without considering the organic matter. Among the diverse 

soil characteristics, texture is a key factor that constols the 

soil behavior. For this reason, the first system used by 

geotechnical engineers classified soil by grain size or soil 

texture.
12 

 

The soil texture influences the movement of water and air 

through voids as well as the water content of the soil. In soils 

that are predominantly sandy, the hydraulic conductivity is 

high and the water content is low because sand has a small 

surface area and is more prone to water repellence. In 

contrast, clay soils have slow water transmission capability 

and high water retention. These types of soil restrict not only 

the water and air movement but also the water entry into the 

soil compared with sandy soils. 

 

The soil texture also affects the soil strength. The soil 

strength of aggregated soils increases as the clay content 

increases; therefore, single grain or poorly aggregated soils 

such as sands, loamy sands and sandy loams usually have the 

weakest soil strengths unless they are cemented or compacted. 

The individual particles of single grain soils are prone to 

rearrangement but these soils are easily influenced by 

compaction resulting in the formation of hard pans. This 

often occurs in Korea’s Coastal Plain region that primarily 

consists of sandy soils. 

 

The USDA system for determining the texture classification 

differs significantly from the Unified Soil Classification 

System (USCS) and the American Association of State 

Highway and Transportation Officials (AASHTO) system 

that are traditionally used by worldwide engineers. The first 

significant difference is the threshold between the particle 

sizes among the three systems. The second significant 

difference is that the USDA classification system depends 

entirely on particle size: the Unified and AASHTO 

classification systems rely on both particle sizes and other 

test results such as the Atterberg limits. However, in Korea, a 

spatial database that combines the grain size and Atterberg 

limits does not exist yet. 

 

Comparable with the soil texture, the surficial lithology also 

has a significant function in soil characteristics. In a natural 

slope, soil layers are commonly called unconsolidated soil 

and include the rock mass and rock type.
43

 Soil is defined as 

the sediments or other accumulations of mineral particles 

formed by the physical or chemical disintegration of 

primarily rock and the air, water, organic matter and other 

substances that may be included. Thus, the physical 

characteristics of the upper soil differ according to the 

geological conditions of the bedrock.
13 

 

The influence of the surficial lithological characteristics on 

the hydraulic properties has remained obscure. Regarding 

permeability, the constant of proportionality is represented 

using the geological properties of the soil medium. For the 

medium, the properties that determine the flow rate are 

related to the particle structure and geological origins such as 

the mineralogy, weathering and sedimentary environment. 

High values of saturated hydraulic conductivity were present 

in the lithology with a sandy matrix in regions of felsic 

granitoids or granite gneisses while low values were typically 

found in the lithology derived from sedimentary rocks. 
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All geological materials have an ability to resist failure under 

stresses and this is referred to as strength. The shear strength 

of each lithology is a function of lithological characteristics 

(clay content, clay mineralogy etc.) and other engineering 

properties (natural water content, specific gravity, void ratio, 

absorption, adsorption, Atterberg limits etc.). If the grains are 

densely packed, the cementing mineral is strong (e.g. quartz) 

and there are few pore spaces, the lithology type is extremely 

strong. The soils have a wide variety of strengths depending 

on their lithology varying from strong or medium strong 

rocks e.g. sericite metasandstone, limestone, greywacke and 

sericite schist through to weak rocks e.g. meta-siltstone, 

clayey and silty shale and phyllite. 

 

The primary objective of this paper is to discuss the 

application of different spatial databases as input parameters 

to manage the physically based model in a large area. 

TRIGRS model simulations for the study area according to 

different scenarios are conducted in order to estimate the 

applicability of the physical model. In order to obtain a 

quantitative comparison of the models using both 

geotechnical investigation data and open source databases 

such as soil texture and geology, a landslide inventory map of 

the case study was developed. Furthermore, other landslide 

susceptibility models that are used in Korea are cited for 

quantitative validation. Finally, the limitations of the current 

application are addressed and potential solutions and 

guidelines for future studies are proposed. 

 

Case Study  
Study area: The study area was Woomyeon Mountain which 

is located in the Seocho district of Seoul, South Korea (Fig. 

1). It is located at 37°27′00″N - 37°28′55″N latitude and 

126°59′02″E - 127°01′41″E longitude. The elevation of 

Woomyeon Mountain is 293 m above sea level. The study 

area, which is encircled by buildings and roads, amounts to 

5,104,162 m
2
 and is predominantly covered by forest with 

mostly oak trees. 

 

The geology of the Woomyeon Mountain region primarily 

consists of gneiss and granite. The banded biotite gneiss was 

moderately weathered and has stripes called gneissic banding 

which develop under conditions of high temperature and 

pressure. Due to the gneissic banding, it is clear that the study 

area has been exposed to extreme shearing. 

 

The soil profile can be divided into three layers
19

: a 

colluvium layer extending to a maximum depth of 3.0 m 

from the ground level, a transition zone composed of 

primarily a clay layer (thickness: 0.2 m to 0.5 m below 

colluvium layer) and a subsoil of stiff weathered bedrock 

followed by another clay layer. 

 

Landslide event: From July 26 to July 27, 2011, a heavy 

rainfall (470 mm in two days) occurred in Seoul that was 

approximately 20% of the total annual rainfall for the region. 

During this precipitation event, 147 catastrophic landslides 

occurred on Woomyeon Mountain. Most landslides were 

accompanied by debris flows and the mixtures of debris 

flowed down the roads into the surrounding communities. 

Sixteen people were killed and ten buildings were damaged 

by these debris flows which led to economic losses of 

approximately US$15 million. During the storm, the shallow 

landslides on the steep mountainous terrain were primarily 

triggered by the heavy rainfall that increased the pore 

pressure of the soil in the near-subsurface with an attendant 

decrease in the soil’s shear strength. Under these conditions, 

the precipitation-induced landslides caused translational mass 

movements that occurred suddenly. Fig. 2 depicts the 

locations of the damaged districts (landslide scarps, debris 

flow area and inundated buildings) after the disaster. 

 

Creating a landslide inventory: Accurate mapping of 

landslides is very important for landslide susceptibility 

analyse. Although mapping of landslides appears to be an 

objective task, the inventory maps contain a large degree of 

subjectiv.
42

 van Westen et al
42

 examined the agreement of 

different landslide inventory maps through comparing the 

independent mappings of three different teams of 

geomorphologists for the same area in the Alpago area in 

Italy. As a result, two of the three landslide inventory maps 

were similar but one map differed considerably. This 

indicates that landslide inventory mapping can vary when 

conducted by different teams because direct landslide 

susceptibility mapping is a subjective task that relies on the 

expertise, experience, assessment and opinions of the 

researcher.  

 

In addition, collecting data such as satellite images, aerial 

photographs and field investigations to identify landslides are 

essential for accurate landslide inventories. Many studies 

have illustrated the application of remote-sensing data for 

landslide.
9,28,33,45

 In this study, aerial photographs with a 

resolution of 25 cm and satellite images with a resolution of 1 

m taken before and after the landslide event were used to 

detect the precise landslide locations. After digitizing the 

estimated landslide points, a temporary landslide inventory 

map was compared with the field investigation map 

registered in an official archive of disaster survey reports and 

publications for the Seoul government by the Korean Society 

of Civil Engineers.
20

 Fig. 3(a) presents the landslide locations 

and this image is suitable for identifying and mapping the 

landslides in fig. 2(a). The landslide map identified 147 

individual landslides with a landslide density of 29 

landslides/km
2
. Most landslides transformed into translated 

debris flows as plotted in fig. 2(a).  
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Spatial database 
Many important parameters are involved in the TRIGRS 

model e.g. the topographic factors and soil thickness, as well 

as the strength and hydraulic parameters of the soil. In order 

to apply a distributed model, the input parameters must be 

constructed into a spatial database in a GIS platform. The 

aerial photographic, satellite image, precipitation, 

topographic, geotechnical investigation, soil texture and 

geological data in the study area were collected as described 

in table 1. These data are available for all of Korea in either 

digital maps or paper maps. Then, these data were 

constructed into a spatial database for the application of the 

TRIGRS model. The ArcGIS was used to create grids with 

10 m cells and to quantify the aforementioned information 

for each cell of the Digital Elevation Model (DEM).  

 

A key assumption of the approach used in this study is 

regarding the hydraulic parameters including the hydraulic 

saturated conductivity (Ks), diffusivity (D0) and steady 

infiltration rate (Iz). The values of D0 and Iz  were not well 

defined because they had wide ranges according to the 

complex properties of the soil (e.g. voids, fine content and 

soil density). Liu and Wu
27

 proposed that the D0 value could 

be assumed to be 200 times that of the Ks and Iz is 0.01 times 

that of Ks, based on the literature.  

 

In the simulations conducted in this study, a uniform soil 

depth of 2 m was used due to the similar value of the soil 

depth in various reports
19

 and the presence of shallow 

landslides mostly between 1 and 3 m in Korea. The initial 

ground water table was set at the same depth of soil thickness 

due to a lack of heavy antecedent rainfall before the event 

and the hot, dry conditions during the summer of this event.
16 

 

For the rainfall, the rainfall intensity database was obtained 

from weather stations operated by the Korea Meteorological 

Administration. There are three meteorological monitoring 

stations (Namhyun, Seocho and Gwacheon) near Woomyeon 

Mountain. The climate in the study area is characterized by 

an average annual rainfall of 1400-1500 mm with the highest 

rainfall in July and the lowest in January. However, the 

climatic conditions in July 2011 differed significantly to the 

average. During July alone, Woomyeon Mountain received 

approximately 55% of its total annual precipitation of 2039 

mm. The hourly maximum rainfall was 114 mm/hour (07:44-

08:44 on 27 July 2011) which was 120 years of rainfall 

recurrence interval at Namhyun Station. Fig. 4 presents part 

of the rainfall input layers (hourly rainfall intensity from 

08:00 to 09:00 on 27 July 2011) using this analysis. 

 

Geotechnical investigation database: All available data 

were obtained from the geotechnical engineering 

investigation of the landslide hazard restoration work 

conducted by the National Forestry Cooperative Federation
32

, 

Korean Society of Civil Engineers
20

 and Korean 

Geotechnical Society
19

. After the landslides occurred on July 

27
th
, a total of 58 geotechnical investigation boreholes were 

drilled in order to investigate the ground condition, 

hydrologic and geological information. Among these, 19 soil 

samples were collected from 13 sites which were evenly 

distributed across Woomyeon Mountain and various 

geotechnical field or laboratory tests were conducted in order 

to understand the soil characteristics more accurately. 

 

The locations of the investigation boreholes and profiles are 

depicted in fig. 5. The study area was divided into five zones 

based on the catchment and engineering properties. The input 

values and parameter units according to the property zones 

are listed in table 2. 

 

Soil texture database: Korea Forest Service provides forest 

soil maps including soil textures for all of Korea. These maps 

with a scale of 1:25,000 were developed from field 

investigations over a long period of time and are being 

updated constantly. The types of soil included in these 

texture maps by Korea Forest Service were sandy loam (SL), 

loam (L), silt loam (SiL), silty clay loam (SiCL), sandy clay 

loam (SCL), silty clay (SiCL), clay loam (CL), clay (C), 

loamy sand (LS) and sand (S) based on the soil separates 

system defined by the USDA. The soil texture of the study 

area consists primarily of sandy loam and silt loam as shown 

in fig. 6. 

 

There is literature available regarding the numerically 

suggested values of the hydraulic properties and material 

strengths. The infiltration characteristics such as the saturated 

hydraulic conductivity and unsaturated properties were 

proposed by Clapp and Hornberger.
7
 They tested 1446 soil 

samples and derived the representative values according to 

the soil classes. In terms of soil strength, the National 

Disaster Management Institute (NDMI) proposed the unit 

weight, cohesion and internal friction angles as the 

recommended values of soil in Korea.
31

 

 

The relationship between the landslide and soil texture has 

been established in the literature. The landslide occurrence 

probability is higher in gravelly loam, rocky sandy loam and 

rocky loam and is lower in loam and sandy loam. The 

relationships are primarily attributed to the soil grain size. 

During heavy rain, if the grain size is greater, water can flow 

quickly through the soil due to the higher porosity
12,21

 which 

makes the slope more susceptible to landslides. 

 

Geology database: A geological map of the study area with 

a scale of 1:50,000 was developed by the Korea Institute of 

Geoscience and Mineral resources (KIGAM) as depicted in 

fig. 7. The categories of rock types that form the basis for the 
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soil are based on the geological and mineralogical data. The 

hierarchical categories based on the KIGAM maps include 

igneous, sedimentary and metamorphic geology. 

 

Jun et al
15

 estimated the average hydraulic properties and 

proposed simple equations for estimating permeability 

according to the geologic conditions. The soil tests were 

performed on the specimens obtained from approximately 

1,150 sites including landslide and non-landslides areas in 

natural terrains for the past 10 years in Korea. For the 

material strength, Kim
18

 conducted tests as objects of the soil 

layer of natural slopes in landslides areas. In that study, the 

different soil specimens that had various lithological types 

were tested in a multiple-reversal direct shear device in order 

to measure the shearing resistance of the gneiss, granite and 

sediment soils. Those results are reliable because the geology 

was classified using a geology map from KIGAM in the 

research. The geotechnical data which was obtained from the 

studies of Jun et al
15

 and Kim
18

 have been assigned to each 

cell on the basis of the previously defined three primary 

lithological units which are summarized in tables 4(a) and 

4(b). 

 

In the relationship between landslides and lithology, 

landslides are frequently observed in granite gneiss and 

leucocratic gneiss areas but are unusual in quartz mica schist 

and biotite gneiss areas.
25

  

 

Description of the TRIGRS model 
TRIGRS models the rainfall infiltration that results from 

storms that have durations ranging from a few hours to a few 

days. To do so, it uses the analytical solutions of partial 

differential equations that represent one-dimensional vertical 

flows in isotropic homogeneous materials for either saturated 

or unsaturated soil conditions (Fig. 8). This process combines 

the theoretical bases of the models for infiltration and 

subsurface flows of storm water, routing of runoff and slope 

stability in order to calculate the effects of the rainfall on the 

analysis of the stability over large areas. It is possible to 

analyze complex storm sequences over complex 

geomorphological terrains because the infiltration, hydraulic 

properties and slope stability input parameters are allowed to 

vary over the grid area. The safety factor of each pixel in the 

area is calculated analytically. The following provides a brief 

description of the infiltration and slope stability model used 

by TRIGRS to represent these processes. 

 

Infiltration model: The infiltration models in TRIGRS for 

initial wet conditions are based on Iverson’s
14

 linearized 

solution of the Richards equation and on the extensions by 

Baum et al
2,3

 to that solution. Only a short description is 

presented here since many authors have used and described 

the TRIGRS model in detail over the past decade. The 

generalized solution of pore pressure is given as follows:  

1N

nZ LZ LZ LZ LZ2

n 1 n 1 1

n=1 m=1S 2 2

1 n 1 n

ψ(Z,t) (Z d)β

I (2m 1)d (d Z) (2m 1)d (d Z)
2 H(t t )[D (t t )] ierfc +ierfc

K
2[D (t t )] 2[D (t t )]

∞  

1N

nZ LZ LZ LZ LZ2

n+1 1 n+1 1 1

n=1 m=1S 2 2

1 n+1 1 n+1

I (2m 1)d (d Z) (2m 1)d (d Z)
2 H(t t )[D (t t )] ierfc +ierfc

K
2[D (t t )] 2[D (t t )]

∞

     (1) 

where  is the ground-water pressure head, d is the steady-

state depth of the water table measured in the vertical 

direction and Z = z / cos . Here, Z is the vertical coordinate 

direction (positive downward) and depth below the ground 

surface, z is the slope-normal coordinate direction (also 

positive downward) and is the slope angle. dLZ is the depth 

of the impermeable basal boundary measured in the vertical 

direction and  = cos
2

- (IZLT / KS), in which Ks is the 

saturated hydraulic conductivity in the Z direction, IZLT is the 

steady (initial) surface flux and InZ is the surface flux of a 

given intensity for the n
th
 time interval.  

 

D1 = D0 / cos
2

  
 

where D0 is the saturated hydraulic diffusivity (D0 = KS / SS 

where KS is the saturated hydraulic conductivity and SS is the 

specific storage). N is the total number of time intervals; m is 

the index of the infinite series displaying odd term in the 

complementary error function. H (t - tn) is the Heaviside step 

function and tn is the time at the n
th
 time interval in the 

rainfall infiltration sequence. The function erfc( ) is the 

complementary error function where ierfc( ) = (1/ ) 

exp(-
2
) - erfc( ). 

 

Slope stability model: The model of the slope stability 

in d  TRIGRS uses an infinite slope stability analysis which 

assumes that the slope is infinitely long and planar failure 

surface. It is characterized by the ratio of resisting friction to 

gravitationally induced downslope driving stress. In this 

scheme, FS < 1 denotes unstable conditions and the depth Z, 

where FS first drops below 1, will be the depth of the 

landslide initiation. The equation for calculating the safety 

factor of the slope incorporating eq. (1) into the classic an 

infinite slope model is given as follows: 
 

W

S

c ψ(Z,t)γ tantan
FS(Z,t)= +

tanδ γ Zsinδcosδ
                           (2) 

 

where c is the soil cohesion for effective stress, is the soil 

friction angle for effective stress, w is the unit weight of 
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groundwater and s is the unit weight of the soil. Further 

theoretical details of the model have been fully described in 

the TRIGRS open file reports.
2,3

 

 

Results and Discussion 
A key objective of this research was to evaluate the 

spatiotemporal predictability of landslide events in 

Woomyeon Mountain using the TRIGRS model for different 

input parameter databases of geotechnical investigation, soil 

texture and geology. Fig. 9(a) and 9(b) present the resulting 

safety factor over the study area for the application of 

geotechnical investigation database. For a severe storm, the 

resultant safety factor exhibits different levels of landslide 

susceptibility according to the property zones (Fig. 5). 

However, a landslide did not occur in zone 3 due to the high 

value of strength and small hydraulic conductivity. The areas 

with safety factors of less than 1.0 were predominantly 

located in regions of high permeability and low shear 

strength along the steep mountain slopes. 

 

Fig. 10 presents the spatial distributions of the safety factors 

for the two input databases: soil texture [Fig. 10(a)] and 

geology [Fig. 10(b)]. For each database, the TRIGRS model 

reasonably simulated the spatial probability of landslides as 

in the geotechnical investigation database scenario. 

 

For the soil texture database based on the soil texture map, 

the areas characterized with a safety factor less of than 1.0 

were sizeable as seen in fig. 10(a). This is because sandy 

loam comprises the vast majority of the study area and it has 

a smaller value of soil cohesion than silt loam. This trend of 

the region with a small cohesion being more susceptible 

appeared in the application results of the geology database as 

depicted in fig. 10(b). In the deterministic slope stability 

analysis, the safety factors are more sensitive to the soil 

cohesion than the internal friction angle for typical ranges.
38

 

Furthermore, the soil cohesion has greater spatial variability 

than the frictional parameter.
8
 Therefore, among the landslide 

susceptibility parameters, the spatial variation in the soil 

cohesion most significantly influences the safety factor 

calculations. 

 

Along the boundary between the housing sites and 

mountainous areas, unstable regions were predicted because 

the DEM does not consider the number of retaining walls and 

reinforced excavated slopes. Nevertheless, the performance 

of the TRIGRS model for prediction which was evaluated 

through a landslide inventory is considered appropriate as 

shown through figs. 9 and 10. 

 

For the quantitative validation of the landslide susceptibility 

mapping for each scenario, the cumulative frequency 

diagram shown in fig. 11 and table 5 were applied. In this 

scheme, the validation was performed through comparing the 

known landslide location data from the inventory with the 

landslide susceptibility simulation results for the three types 

of spatial databases. In order to compare the relative accuracy 

for each application, the calculated safety factor values of all 

cells in the study area were ranked in descending order and 

this is known as the landslide susceptibility index rank.
26

  

 

Then, the ordered cell values were divided into 20 classes 

with 5% intervals. The cumulative percentage of the 

landslide occurrence within these divided classes was marked. 

It is natural for classes with a high landslide susceptibility 

rank to contain more landslides if the model is valid. Ideally, 

the slope of the curve should decrease consistently. 

 

For example, for the model using the input properties from 

the geotechnical investigation database, the 80 to 100% 

(20%) class of the study area where the landslide 

susceptibility index had a higher rank included 99.3% of all 

landslides. That is, 99.3% of the actual landslides were 

correctly localized within 20% of the predicted susceptible 

area. In addition, it occupies 62.8% of the study area using 

the soil texture database and 75.2% of the study area using 

the geology database as summarized in table 5. Among the 

three estimation procedures considered, the geotechnical 

investigation database is used as the input parameters 

demonstrated the best performance in the every class. 

Although the simulation performance using the geology 

database was similar to that using the soil texture map, the 

former was better than the latter in the 55~95% classes.  

 

The success rate of the previous research results that used 

various statistical models in Korea
22,23,26

 has been cited in 

comparison with the conventional statistical approaches: the 

frequency ratio, weight-of-evidence, likelihood ratio, logistic 

regression and neural network models were used to develop a 

susceptibility map for Korea. As a result, for the 80 to 100% 

class (20% of the high ranked susceptible areas in their 

simulation), the success rate for these models was reported to 

be 64% for the frequency ratio, 54% for the weight-of-

evidence, 50.8% for the likelihood ratio, 49% for the logistic 

regression and 39.1% for the neural network. The 

performance of the physically based model using the indirect 

material strengths and hydraulic properties exhibited better 

results from a quantitative perspective, despite the small 

database (i.e. 62.8% of the soil texture map and 75.2% of the 

geology map).  

 

As a general conclusion, the slope stability models can be 

applied successfully at a regional scale when the quality of 

the input data is good and is appropriately constructed and 

modeled. In the same context, recent studies have 

demonstrated that the best approach for landslide spatial 

prediction is the application of deterministic models 
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combined with transient or steady state infiltration models for 

hill slope hydrology.
34

 

 

For a quantitative comparison, the areas under the curve in 

fig. 11 were recalculated as a total area which equals 1 for 

perfect prediction. The rate explains how well the model and 

input factors predict shallow landslides. Thus, the area can be 

used to assess the prediction accuracy. The result with the 

geotechnical investigation data demonstrated that the area 

ratio was 0.9574; thus, it is considered that the prediction 

accuracy is 95.74%. The areas under the curves of soil 

texture data and geology data results were 0.8209 and 0.8471 

respectively which indicate 82.09% and 84.71%. 

 

Conclusion 
Deterministic models provide the best quantitative results for 

landslide hazard detection that can be used directly in the 

design of engineering works and in the quantification of risk. 

However, these models need a large amount of detailed input 

data derived from field investigations and laboratory tests as 

well as the construction of continuously distributed data for 

the information. 

 

This paper proposed a deterministic approach using the 

suggested soil properties as input data from GIS-based soil 

texture and geology databases in order to assess rainfall-

induced shallow landslides in a mountainous region in Seoul, 

Korea. The simulations were conducted at two levels: (i) 

constructing the GIS-based spatial database for TRIGRS 

input parameters and landslide inventory and (ii) analyzing a 

case study for 147 shallow landslides that occurred during an 

intense rainfall event in July 2011 considering the various 

input conditions. The suitability of these methods was tested 

through comparison with the conventional method of direct 

utilization from field investigations and laboratory tests 

which have previously been proven to be reliable in 

identifying anomalies in susceptibility analyses. 

 

The validation results demonstrated that the performance of 

the simulation results with well-measured geotechnical data 

is a prediction accuracy of 95.74% in the success rate method, 

and the result using the geology data has a better predication 

accuracy of 2.62% (84.71-82.09%), higher than that using the 

soil texture database. The model simulations resulted in 

reasonable estimates of the mountain hazards based on a 

deterministic approach at a regional scale. It is noteworthy 

that the proposed approach is useful when field investigation 

and laboratory test results are not available for the entire 

region. 

 

Although the indirect approach has many advantages, there 

are limitations that can reduce the model accuracy and 

continual research is required in the following areas: 

(1) A number of verifications with other case studies that 

have different regions, data and scales are necessary. As a 

result of the small area and the 1:50,000 scale geology map 

that was used in this study, there are a number of lithology 

types within the study area and hence a wider study area is 

needed. 

 

(2) The proposed values for the soil material in this study 

should be verified and corrected continuously in order to 

improve the model accuracy. It is very important to note that 

the soil texture alone does not provide sufficient information 

about soils. Thus, understanding and predicting the soil 

behavior and suitability are required. 

 

(3) In order for the method to be applied, the landslide-

related data in spatial form is essential. In Korea, the 

landslide-related spatial data for the topography, soil and 

geology are available either as a digital map or a paper map. 
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Table 1 

Dataset used in this study 
 

Database Format GIS data type Scale Source 

Hazard data Landslide inventory Point coverage 1:5,000  

Damageable objects Buildings, roads, facilities Line and polygon 

coverage 

1:5,000 National Geographic 

Information Institute 

Image data Aerial photographs GRID 25  25 cm National Geographic 

Information Institute 

Satellite images GRID 1  1 m Commercial company 

Hydrologic data Precipitation Point coverage 1:5,000 Korea Meteorological 

Administration 

Basic data Topographic map Point and line 

coverage 

1:5,000 National Geographic 

Information Institute 

Geotechnical 

investigation map 

Point coverage 1:5,000 Field investigation reports 

Forest soil map Polygon coverage 1:25,000 Korea Forest Service 

Geology map Polygon coverage 1:50,000 Korea Institute of Geoscience 

And Mineral resources 

. 
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Table 2 

Summary of the field investigation and laboratory test values used in the simulations. 

 

Parameter (unit) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 

Friction angle,  (°) 25.3 28.5 37.6 30.9 28.2 

Cohesion, c (kPa) 9.6 5.8 7.7 7.6 6.3 

Total unit weight of soil, s (KN/m
3
) 18.1 17.7 17.0 17.3 18.2 

Hydraulic conductivity of saturated, Ks (m/s) 7.15×10
-6

 3.37×10
-6

 1.80×10
-6

 9.70×10
-6

 3.69×10
-6

 

Saturated volumetric water content, s 0.50 0.50 0.51 0.51 0.51 

Residual volumetric water content, r 0.20 0.20 0.19 0.19 0.19 

Hydraulic diffusivity, D0 (m
2
/s) 200 Ks 

Steady infiltration rate, Iz (m/s) 0.01 Ks 

 

Table 3(a) 

Soil strength according to soil texture.
31

 

 

Parameter (unit) Sand 

(%) 

Silt (%) Clay (%) Unit 

weight 

(KN/m
3
) 

Cohesion 

(kPa) 

Internal 

friction 

angle (°) 

Silty clay loam 10 55 35 17.30 11.45 22 

Silt loam 15 70 15 17.45 9.55 27 

Sandy loam 70 15 15 19.10 4.05 28 

Fine sandy loam 70 15 15 19.10 4.05 27 

Clay loam 30 30 40 17.90 9.80 20 

Loamy sand 80 10 10 19.40 2.70 30 

Loamy fine sand 100 0 0 20.00 0.00 30 

Loamy coarse sand 100 0 0 20.00 0.00 30 

Loam 40 40 20 18.20 7.40 25 

 

Table 3(b) 

Soil properties according to soil texture.
7 

 

Soil texture b s(cm) s Ks (m/s) 

Sand 4.05 3.50 0.395 1.76×10
-4

 

Loamy sand 4.38 1.78 0.410 1.56×10
-4

 

Sandy loam 4.90 7.18 0.435 3.47×10
-5

 

Silt loam 5.30 56.60 0.485 7.20×10
-6

 

Loam 5.39 14.60 0.451 6.95×10
-6

 

Sandy clay loam 7.12 8.63 0.420 6.30×10
-6

 

Silty clay loam 7.75 14.60 0.477 1.70×10
-6

 

Clay loam 8.52 36.10 0.476 2.45×10
-6

 

Sandy clay 10.40 6.16 0.426 2.17×10
-6

 

Silty clay 10.40 17.40 0.492 1.03×10
-6

 

Clay 11.40 18.60 0.482 1.28×10
-6
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Table 4(a) 

Ranges and mean values for the cohesion and shearing resistance angle of soils according to the geological conditions.
18

 

Geology Material Cohesion (kPa) Angle of shearing resistance (°) 

N Range Mean N Range Mean 

Gneiss Landslide 28 1.6~29.6 8.8 28 18~38 33 

Non slide 27 1.1~10.6 5.1 27 31~39 36 

 Total 55 1.1~29.6 7.1 55 18~39 34 

Granite Landslide 29 0.8~13.3 5.3 29 30~39 34 

Non slide 29 0.1~8.2 4.0 29 31~42 36 

 Total 58 0.1~13.3 4.7 58 30~42 36 

Sedimentary 

rocks 

Landslide 39 1.5~8.5 4.5 39 31~37 34 

Non slide 42 0.7~12.0 4.8 42 31~41 36 

 Total 81 0.7~12.0 4.6 81 31~41 36 

 

Table 4(b) 

Basic statistical analysis results of the major factors.
15

 

 

Contents Coefficient of permeability 

(m/s) 

Silt and clay contents (%) Dry unit weight (KN/m
3
) 

Non-occur. Occurrence Non-occur. Occurrence Non-occur. Occurrence 

Gneiss N 513 45 500 28 513 45 

Mean 2.2E-3 2.4E-3 5.63 7.76 13.5 13.2 

Median 7.5E-5 7.6E-5 4.87 5.75 13.7 13.3 

Standard 

deviation 

1.4E-3 9.6E-3 3.78 6.69 1.5 0.8 

Min. value 7.9E-7 3.0E-8 0.33 0.73 8.6 11.5 

Max. value 3.1E-2 6.3E-2 27.83 32.56 17.8 15.5 

Granite N 183 46 156 20 183 46 

Mean 2.0E-4 3.5E-5 5.45 13.39 12.9 13.1 

Median 1.0E-4 2.3E-6 4.67 7.70 13.0 13.3 

Standard 

deviation 

2.4E-4 9.8E-5 4.53 11.52 1.7 1.4 

Min. value 6.3E-7 2.0E-8 0.37 2.78 9.9 10.3 

Max. value 9.8E-4 6.0E-4 28.51 40.46 17.2 15.8 

Sedimentary 

rocks 

N 36 - 36 - 36 - 

Mean 1.0E-4 - 10.32 - 12.7 - 

Median 3.7E-5 - 8.89 - 12.8 - 

Standard 

deviation 

2.0E-4 - 6.16 - 1.5 - 

Min. value 1.0E-6 - 2.15 - 8.3 - 

Max. value 1.3E-3 - 21.80 - 15.9 - 
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Table 5 

Summary of the cumulative frequency diagram for each class 

Class (%) Success rate 

Geotechnical 

Investigation map 

Soil texture map Geology map 

95 - 100% 72.4 25.5 20.0 

90 - 100% 95.2 42.1 47.6 

85 - 100% 97.9 52.4 64.8 

80 - 100% 99.3 62.8 75.2 

75 - 100% 100.0 73.8 84.8 

70 - 100% 100.0 84.1 88.3 

65 - 100% 100.0 88.3 93.1 

60 - 100% 100.0 90.3 93.8 

55 - 100% 100.0 93.8 95.2 

50 - 100% 100.0 95.2 95.2 

45 - 100% 100.0 95.9 95.2 

40 - 100% 100.0 96.6 96.6 

35 - 100% 100.0 96.6 97.9 

30 - 100% 100.0 97.2 97.9 

25 - 100% 100.0 98.6 99.3 

20 - 100% 100.0 99.3 99.3 

15 - 100% 100.0 99.3 100.0 

10 - 100% 100.0 100.0 100.0 

5 - 100% 100.0 100.0 100.0 

0 - 100% 100.0 100.0 100.0 

 

  

 
 

Fig. 1: Location map of the Woomyeon Mountain region 

in Seoul, South Korea. 
 

 

 

 
 

Fig. 2: Overview of the Woomyeon Mountain landslide 

event on 27 July 2011: 

(a) landslides and debris flow scarps, (b) debris flow 

hazards and (c) damaged apartments. 
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Fig. 3: Landslide inventory map of the study area: 

(a) landslides scars mapping and (b) three-dimensional 

plot of the landslides. 
 

 
Fig. 4: Section of the rainfall input layers (hourly rainfall 

intensity from 08:00 to 09:00 on 27 July 2011). 
  

 
Fig. 5: Locations of the investigation boreholes for 

sampling soils and the map showing the property zones. 

The soil parameters for each zone are detailed in table 2. 
 

 

 
Fig. 6: Soil texture map of the study area: the soil 

parameters for each texture are detailed in tables 3(a) 

and 3(b). 
 

 
Fig. 7: Geological map of the study area: the soil 

parameters for each geology are detailed in tables 4(a) 

and 4(b). 
 

 
 

Fig. 8: Conceptual diagram of the TRIGRS model. 
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Fig. 9: Spatial distributions of the simulation results using 

the geotechnical investigation database: (a) resulting map 

of safety factors and (b) resulting map of unstable areas 

(FS< 1). 

 

 
Fig. 10: Spatial distribution of the unstable area (FS < 1) 

according to TRIGRS in the study area: simulation 

results using (a) the soil texture database  

and (b) the geology database. 

 
Fig. 11: Cumulative frequency diagram showing the 

landslide susceptibility index rank occurring in the 

cumulative percentage of landslide occurrence. 
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