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1. Introduction 
 

Road structures are designed to support vehicular traffic 

and provide safe, efficient, and durable transportation. 

These structures typically consist of several layers, each 

serving a specific function to ensure road stability, strength, 

and longevity. They are engineered to handle various 

stresses caused by traffic and environmental conditions 

(Wang et al. 2024). A good design, choice of materials, and 

maintenance will ensure that the road performs well and is 

safe over a long period. Stabilization techniques, such as 

using agricultural waste additives, have been explored to 

enhance the stability of expansive soils, contributing to 

stronger subsurface foundations (Gidebo et al. 2023). 

However, the visible pavement is not the sole factor in road 

strength, with much of its durability depending on the 

quality and integrity of the underlying layers. Therefore, 

focusing on these foundational layers is essential, as they 

provide support for the entire road (Sato and Kuwano 

2025). Sinkholes and cavities weaken these foundations, 

making roads more susceptible to damage, cracks, and 

eventual collapse, which poses risks to drivers and 

pedestrians (Liu et al. 2024). Studies have shown that 

subsurface anomalies, such as voids and cavities, can 

disrupt load distribution and compromise foundation  
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stability (Basha and Eldisouky 2023). Non-invasive 

techniques like ground-penetrating radar (GPR) and 

electromagnetic surveys have become crucial for early 

detection, enabling proactive maintenance and reducing 

road safety risks before surface damage occurs (Shi 2022). 

By identifying these weaknesses in advance, engineers can 

prevent accidents (Fig. 1), minimize traffic disruptions, and 

extend the lifespan of road structures. Recent advancements 

in Artificial Intelligence (AI) based GPR analysis, 

particularly deep learning techniques like Transformers and 

attention mechanisms, have further enhanced defect 

detection. For instance, Zhang et al. (2019) and Dawood et 

al. (2020) highlighted how advanced GPR techniques, such 

as Full Waveform Inversion (FWI) and Reverse Time 

Migration (RTM), improve defect detection accuracy in 

subsurface imaging. Additionally, Huang et al. (2024) 

introduced a self-supervised framework for GPR data, 

further enhancing flaw detection and analysis. As deep 

learning techniques evolve, methods such as Transformers 

and attention mechanisms are increasingly applied in GPR 

analysis, drawing from their success in natural language 

processing and image recognition to enhance pattern 

identification in large datasets. In our study, we contribute 

to these advancements by utilizing a Fully Convolutional 

Network (FCN) in the development of KIT-GPR for 

simulation, establishing a foundation for integrating more 

sophisticated techniques like attention mechanisms in future 

research. 
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Abstract.  Detecting underground cavities and voids is critical for ensuring structural safety in sectors such as civil engineering 

and environmental studies. Ground Penetrating Radar (GPR) B-scan imaging is a valuable tool for this purpose, yet traditional 

methods often struggle with precise cavity characterization, especially as cavities develop over time. Addressing this gap, this 

study introduces an advanced methodology using Fully Convolutional Networks (FCNs) to improve cavity detection accuracy 

across four progressive stages: Initial, Intermediate, Critical, and Damaged. The GUI based KIT-GPR model, trained on Finite 

Difference Time Domain (FDTD) simulated data, can identify cavities as they grow from small initial voids to significant 

structural threats. This method influences GUI programming, enabling non-experts to interpret B-scan images more intuitively. 

Key findings indicate that while the KIT-GPR model demonstrates potential in cavity detection across different developmental 

stages, it faces challenges in accurately identifying and classifying cavities, particularly in complex scenarios. These limitations 

highlight the need for further refinement to improve detection reliability in GPR analysis and enhance its applicability in 

subsurface imaging and infrastructure monitoring. 
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GPR is a non-destructive, high-resolution geophysical 

method that utilizes high-frequency electromagnetic waves for 

subsurface structural imaging (Min and Yoon 2024). It 

transmits radar pulses into the ground and records the signals 

reflected back from various underground materials (Fig. 2). 

This reflection provides data that can be analyzed to detect and 

map underground cavities, objects, and structures. GPR is 

widely used across several industries, including civil 

engineering, archaeology, geology, and environmental studies 

(Lai et al. 2017). It is particularly valuable for identifying 

hidden subsurface anomalies such as voids, cavities, and 

sinkholes beneath roads that are barely visible to the naked eye 

(Zhang et al. 2023). 

Detecting cavities in road structures is essential for 

ensuring road safety and longevity. By identifying subsurface 

anomalies, engineers can proactively address potential hazards 

before they evolve into severe issues like sinkholes 

(Yamaguchi et al. 2022). Early detection enables timely 

maintenance and repair, which minimizes costly damages and 

reduces risks to public safety (Jena et al. 2024). Additionally, 

modern methods like GPR provide non-destructive, high-

resolution imaging, allowing for effective cavity detection 

without causing surface damage to the road, which further  

 

 

 

preserves the road infrastructure (Kang et al. 2022). Although 

cavity detection provides numerous benefits, it also has certain 

limitations. The technology and equipment required, such as 

GPR, can be costly to purchase and operate, making it less 

accessible for smaller municipalities or underfunded 

departments. Detection accuracy can be affected by factors 

such as soil type, moisture levels, and road material 

composition, potentially resulting in false positives or missed 

cavities. Furthermore, interpreting the data from GPR scans or 

other imaging tools requires skilled personnel and advanced 

software, which can add to operational costs. 
B-scan imaging is one of the most widely used 

techniques for visualizing GPR data, offering a cross-
sectional view of the subsurface to help experts assess 
cavity depth, size, and location (Kim et al. 2024). During 
scanning, the GPR system emits electromagnetic pulses that 
reflect off subsurface structures, generating a detailed 
visualization of underground conditions. This enables 
precise identification of cavity formation (Balasubramani 
and Gopalakrishnan 2020). The ability of B-scan imaging to 
provide crucial insights makes it a valuable tool for making 
informed repair decisions and implementing preventive 
measures. By carefully analyzing these scans, engineers can 

 

Fig. 1 Example of sinkhole formation in road structures leading to vehicle accidents (Source: Yonhap News) 

 

Fig. 2 Schematic representation of GPR scanning the subsurface cavities and corresponding B-scan 
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accurately pinpoint problem areas (Guerrieri et al. 2024). 
Despite its effectiveness, interpreting B-scans can be 
challenging due to the complexity of radar signal reflections 
(Fig. 2). Variations in subsurface materials, moisture 
content, and cavity shapes often create intricate patterns that 
require expert analysis (Min et al. 2018). This interpretation 
process is typically time-intensive and susceptible to human 
error. To overcome these limitations, automated cavity 
detection models have been developed to process B-scan 
data more efficiently. By leveraging advanced algorithms 
and machine learning techniques, these models enhance 
detection accuracy while reducing the need for expert 
intervention (Tong et al. 2020). 

In this study, we introduce KIT-GPR, a graphical user 
interface (GUI)-based GPR program designed to improve 
both accuracy and usability in cavity detection. This model 
utilizes a Fully Convolutional Network (FCN) powered by 
deep learning to automatically identify and classify cavities 
in B-scan images with minimal human effort. By training 
on extensive datasets, KIT-GPR learns distinctive patterns 
and features associated with subsurface cavities 
(Abdelmawla et al. 2023). Once trained, it can analyze new 
GPR scans, providing accurate visual representations of 
cavity locations, sizes, and depths. By simplifying the 
traditionally complex process of B-scan interpretation, KIT-
GPR serves as an efficient and reliable tool for road 
maintenance professionals. The deep learning model 
predicts underground structures from B-scan images in two 
key stages. First, it extracts essential features using multiple 
convolutional layers while reducing image size through 
pooling layers, enabling the model to focus on key patterns. 
In the second stage, the model reconstructs the image into a 
predicted underground geometry using deconvolution layers 
to restore the original dimensions. Additionally, 
connections between layers help retain critical details for 
improved accuracy. This approach effectively detects 
hidden structures or defects beneath the surface, making it a 
powerful tool for subsurface analysis. 

 

 

2. Methodology  
 

This study proposes a three-stage framework for 

detecting and evaluating cavities beneath road 

infrastructures using Ground Penetrating Radar (GPR) 

simulations. The core of this framework relies on KIT-

GPR, a custom GPR simulation software, and an image 

analysis model based on Fully Convolutional Networks 

(FCNs). This GUI-based GPR tool utilized the finite 

difference time domain (FDTD) method to simulate 

electromagnetic wave propagation, enabling detailed 

subsurface imaging and cavity detection. Additionally, the 

FCN model performs dense pixel-wise predictions, 

facilitating automated analysis of subsurface anomalies in 

the generated GPR images. This section outlines the 

methodology in detail, covering both the simulation and 

image analysis techniques. 

 
2.1 FCNs  
 

The image analysis portion of this study utilizes FCNs, a 

type of neural network specifically designed for dense 

prediction tasks. FCNs are ideal for semantic segmentation 

tasks, as they allow pixel-wise classification of image data 

without requiring fixed-size inputs. Unlike traditional 

convolutional neural networks (CNNs) (which rely on fully 

connected layers that restrict input and output sizes), FCNs 

replace these layers with convolutional layers, making them 

highly adaptable for variable-sized input data, as often 

required in GPR image analysis. Previous studies have 

demonstrated the effectiveness of CNNs in detecting 

subsurface anomalies in GPR data, underscoring the 

potential of neural networks for cavity detection in roadway 

infrastructure (Shrestha and Zhihou 2024). Building on 

these insights, our study employs FCNs to improve 

adaptability and precision in anomaly classification. 

The structure of an FCN enables high-resolution output 

predictions through upsampling operations, which restore 

the spatial resolution of the feature maps to match the 

original image size. This upsampling process is critical for 

generating precise, pixel-level predictions in the B-scan 

images, which depict subsurface layers and cavities. 

Furthermore, the inclusion of skip connections in the 

network architecture allows for the integration of lower-

layer spatial details with higher-layer semantic information, 

enhancing accuracy by preserving fine structural details in 

the output. During training, the FCN model evaluates the 

difference between the predicted and actual pixel labels 

using a cross-entropy loss function: 

𝐿 = −∑𝑦𝑖 𝑙𝑜𝑔(�̂�𝑖)

𝑖

 (1) 

where 𝑦𝑖 denotes the ground truth label for pixel i , with �̂�𝑖 
being the predicted probability for that pixel. This loss 

function is optimized to ensure accurate boundary detection 

and segmentation of cavities, allowing the model to 

effectively distinguish between different cavity stages. 

 

2.2 FDTD method 
 
The KIT-GPR simulation software implements the 

Finite Difference Time Domain (FDTD) method, a 

numerical approach for solving Maxwell’s equations and 

modeling electromagnetic wave propagation in GPR 

simulations. This method is well-suited for detecting 

subsurface material variations, as it accurately simulates the 

interaction of electromagnetic waves with different media. 

Compared to other numerical techniques, such as ray-based, 

frequency-domain, integral, and pseudo-spectral methods, 

FDTD is widely used due to its ability to incorporate key 

physical parameters, including conductivity (σ), dielectric 

constant (ε), and magnetic permeability (µ). Its 

effectiveness in GPR simulations has been demonstrated 

through established tools such as MATLAB-based FDTD 

models (Irving et al. 2006) and gprMax (Warren et al., 

2016), further validating its applicability in subsurface 

imaging and cavity detection. Maxwell’s equations, which 

describe the behavior of electric (E) and magnetic (H) 

fields, serve as the basis of the FDTD approach 

𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡
 (2) 
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𝛻 × 𝐻 = 𝐽 +
𝜕𝐷

𝜕𝑡
 (3) 

where D is the electric displacement field, J represents the 

current density, and B denotes the magnetic flux density. 

These equations are discretized in both time and space, 

allowing for a time-stepped solution across a computational 

grid. The resulting time-update equations for the electric 

and magnetic fields facilitate the simulation of wave 

propagation through different materials at each time step.  

 
2.3 GUI based GPR program (KIT-GPR) 
 
The GUI-based GPR program, KIT-GPR, is a 

specialized simulation tool developed in C# that uses the 

FDTD method widely applied in GPR analysis for 

simulating electromagnetic wave propagation in various 

media. KIT-GPR includes several essential modules (Fig. 3) 

such as the Material Declaration Module, Geometry 

Construction Module, Antenna Parameter Declaration 

Module, and Analysis Module. These modules allow users 

to configure, simulate, and analyze the subsurface structures 

under investigation. 

In the Material Declaration Module, users can define 

key properties of various materials found in subsurface 

structures, such as the dielectric constant (ϵ), electrical 

conductivity (σ), and magnetic permeability (μ). These 

material properties significantly affect wave propagation, 

reflection, and attenuation, playing a crucial role in 

accurately simulating the subsurface environment. Users 

can select from pre-defined materials or input custom 

material parameters based on the specific characteristics of 

the infrastructure under study. The Geometry Construction 

Module enables users to create customized subsurface 

models by defining the geometry of different regions, 

including rectangular, circular, or polygonal areas, and 

assigning corresponding material properties to these  

 

 

regions. By assigning color codes to each material type, this 

module allows for easy visual distinction between layers, 

which is essential when interpreting GPR results. The 

Antenna Parameter Declaration Module provides 

flexibility in configuring the simulation’s electromagnetic 

parameters, such as waveform type, time step, scanning 

step, and scanning line length. These settings are critical for 

controlling the resolution and depth of the GPR data, with 

the software offering a range of pre-configured antenna 

types sourced from the open-source library gprMax. The 

KIT-GPR program also includes real-time error checking to 

ensure accuracy and avoid configuration mistakes that 

could compromise simulation fidelity. Once the setup is 

complete, the Analysis Module facilitates the visualization 

of simulated GPR data. It dynamically displays A-scan 

results at each scan position and generates B-scan images, 

offering a two-dimensional cross-sectional view of the 

subsurface. This real-time visualization enables users to 

observe wave patterns and identify potential anomalies, 

such as voids or cavities. 
 
2.4 Model simulation 
 
In the KIT-GPR program, the material parameters 

shown in Table 1 are used for defining the geometry in GPR 

simulations, with the geometry layers based on Korea’s 

road design standard (MLIT, 2012). The model comprises 

distinct layers such as “Air,” “Asphalt,” “Sub base course 

layer,” “Upper road bed layer,” “Lower road bed layer,” 

“Subgrade,” and “Cavity,” each with assigned specific 

physical properties dielectric permittivity (ϵ), electrical 

conductivity (σ), and magnetic permeability (μ). The 

material parameters data used in this work were collected 

from various research studies (Li et al. 2024). As illustrated 

in Fig. 3, colors are assigned to each material layer for clear 

vis differentiation within the software.  

 

Fig. 3 Arrangement of material parameters and Domain setup in GUI based GPR interface 
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After setting up the material parameters in the KIT-GPR 

program, the domain for the cross-sectional visualization of 

the road was created. The KIT-GPR model domain (Fig. 4) 

represents a 2-m-wide by 2.5-m-deep cross-sectional view 

of a layered road structure for GPR analysis. This model 

illustrates a typical road section and its subgrade layers, 

crucial for understanding subsurface conditions. At the top, 

a 0.35-m air layer represents free space essential for radar 

wave transmission. Followed by a 0.15-m asphalt layer 

simulating the road surface and a 0.1-m surface course layer 

that enhances durability and load distribution. Beneath this, 

a 0.2-m base course provides structural support and 

improves drainage, while a 0.3-m sub-base course offers 

frost protection and additional load distribution. The 

deepest layer, the 1.5-m subgrade, forms the foundational 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

soil beneath the road, playing a critical role in road stability. 

Variations in the subgrade, such as voids or density 

changes, are key focus areas for GPR analysis. In the top-

left corner, the labels “TX” and “RX” indicate the positions 

of the GPR transmitting and receiving antennas, which emit 

and detect radar waves as they pass through each layer. 

These waves reflect differently depending on the material 

properties and thickness of each layer, enabling the 

identification of subsurface anomalies. The inset on the 

right provides further details on layer composition, showing 

specific materials and thicknesses commonly used in 

pavement construction, such as coarse aggregate or specific 

asphalt types. These material details are integral for 

defining the dielectric properties in the KIT-GPR 

simulation, which then predicts wave behavior and helps  

Table 1 The material parameters of KIT-GPR  

No Material 
Dielectric permittivity ϵ 

(F/m) 

Electrical Conductivity σ 

(mS/m) 

Magnetic permeability μ 

(H/m) 

1 Air 1 0 1 

2 Asphalt 3.3 5 1 

3 Sub base course layer 3.8 6 1 

4 Upper road bed layer 9 9 1 

5 Lower road bed layer 10 10 1 

6 Subgrade 9.2 12 1 

7 Cavity 1 0 1 

 

Fig. 4 Domain configuration of pavement layers with dimensions for KIT-GPR simulation 
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identify potential road integrity issues like voids, cracks, or 

density anomalies within the subsurface structure. 

To capture accurate subsurface data, the KIT-GPR 

model incorporates specific scanning and antenna 

parameters (Table 2), including scanning resolution, time 

window, and waveform characteristics. The GPR system, 

represented in the top-left corner as "TX" and "RX," 

consists of transmitting and receiving antennas that emit 

and detect radar waves as they pass through each layer. 

These waves reflect differently based on material 

properties, enabling anomaly detection. Fig. 5 details the 

model's antenna configuration, highlighting key 

specifications such as antenna type (MALA 1.2 GHz), 

source resistance, baseline length, and waveform type 

(Gaussian), which influence signal characteristics. 

Additionally, waveform amplitude, excitation frequency, 

and maximum frequency are set to optimize depth 

penetration and resolution. Scan line configurations, 

including scanning level, length, and step size, ensure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

precise spatial resolution, enhancing subsurface imaging 

accuracy. 

The capabilities of KIT-GPR in simulating subsurface 

conditions have been further explored in our conference 

presentation at the KGS Spring National Conference 2024 

(Le and Go 2024). This work provides additional insights 

into the application of KIT-GPR for ballast railway ground 

assessment, demonstrating its effectiveness in identifying 

fouled layers through simulation. While the modeled B-

scans in this study were not directly validated with real 

experiments, the findings presented in the conference 

further support the accuracy and applicability of the 

proposed approach. 

In numerical GPR modeling, the domain is structured as 

a grid of points, encompassing both the interior region and a 

boundary layer known as the Perfectly Matched Layer 

(PML) (Gedney 2011). PML is a specialized material layer, 

that absorbs outgoing waves to prevent reflections from 

returning into the model’s interior, simulating an infinite  

Table 2 The model and antenna setting parameters of KIT-GPR 

No Name of the parameter Value 

1 Domain (m) 2.5m x 2m 

2 dx, dy, dz (m) 0.005, 0.005, 0.0069 

3 Time window (s) 3×10−8 

4 Antenna type MALA 1.2 GHz 

5 Waveform type Gaussian 

6 Scanning step (m) 0.01 

7 Number of Perfectly Matched Layer (PML) boundaries 20 cell 

 

 

Fig. 5 Model and Antenna setting in KIT-GPR program 

26



 

Advanced cavity detection in ground penetrating radar B-scan image using fully convolutional networks 

 

 

 

space within a finite domain. The interior grid points 

correspond to user-defined material properties, while the 

boundary points are assigned PML material properties 

designed for wave absorption (Irving and Knight 2006). 

Although default PML settings are often used, they can be 

customized to enhance simulation accuracy. By integrating 

these material, model, and antenna parameters, the KIT-

GPR simulation ensures optimized subsurface detection, 

facilitating the identification of road integrity issues such as 

voids, cracks, or density anomalies within pavement layers. 

 

2.5 Dataset creation and B-scan 
 
This paper introduces a four-stage framework for 

detecting deep cavities in subsurface infrastructures. The 

dataset is based on four different cavity growth scenarios 

(Fig. 6), which were manually created using 

WebPlotDigitizer. This computer vision-assisted software 

helps extract numerical data from images of various data 

visualizations (WebPlotDigitizer, 

https://automeris.io/WebPlotDigitizer/). The generated CSV 

files from WebPlotDigitizer were then input into the KIT-

GPR program to simulate these scenarios. In total, 200 

dataset cases were created, divided into four cavity stages, 

Initial stage, Intermediate stage, Collapse-Dangerous stage 

(Critical), and Collapse-Dangerous stage (Damaged). For 

each stage, 50 different cases were generated, each 

featuring the same overall geometry but varying in cavity 

shape and size to reflect realistic underground conditions. In 

the Initial stage, the cavities are small and newly formed 

beneath the road structure. At this point, the cavities consist 

of several small, fragmented voids that pose minimal risk to 

road stability. The KIT-GPR program is used to simulate 

this geometry, and MATLAB generates the B-scan image 

that corresponds to this scenario. The B-scan image shows a 

slight, curved anomaly at the subsurface level, indicating 

the presence of small cavities. These variations allow the 

program to train effectively for early-stage cavity detection.  

 

 

In the Intermediate stage, the cavities begin to expand in 

size. While they have not yet reached critical dimensions, 

these enlarging cavities pose an increasing risk to the road’s 

structural integrity. The B-scan image produced by 

MATLAB during this stage reveals a more pronounced 

anomaly compared to the Initial stage. The curve seen in the 

B-scan is larger, indicating the growing presence of the 

cavity beneath the surface. The Collapse-Dangerous stage 

combines two stages. In the Collapse-Dangerous (Critical) 

stage, the cavities have expanded considerably, nearing a 

size where they could start causing subsurface damage. At 

this stage, the cavity is large enough to potentially lead to 

the formation of sinkholes or other subsurface issues if left 

untreated. The B-scan image generated during this stage 

clearly shows a much more pronounced and broader 

curvature, indicative of the larger cavity below the surface.  

In the final Collapse-Dangerous (Damaged) stage, the 

cavities have reached a point, posing an imminent risk to 

the road structure. These large cavities represent a severe 

threat, potentially causing the collapse of the road surface. 

In the model simulation and evaluation of the results, the B-

scan plays an important role in visualizing the data and 

extracting information from geological cross-sections. The 

B-scan is formed by compiling A-scan data, each 

representing a measurement at a specific output data 

location in the KIT-GPR program. The output data location 

is used in the MATLAB program to generate the B-scan. 

 
 
3. Results and discussion 

 

This study successfully demonstrates a framework to detect 

and evaluate cavity growth beneath road infrastructure using 

the KIT-GPR program and FCNs for image analysis. The 

integration of GPR simulation and deep learning methods 

allows for precise identification and classification of 

subsurface anomalies, specifically focusing on cavity stages 

that pose a potential risk to road stability. The process, as  

 

Fig. 6 Comparison of stages of cavity development in subgrade layer and corresponding GPR B-scan 
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shown in Fig. 7, begins with B-scan inputs generated by KIT-

GPR, which serve as the foundation for predicting the 

geometry of subsurface anomalies. The input B-scan, which 

captures time-domain data across subsurface layers, is 

processed through an FCN model to produce a spatially 

accurate predicted geometry output. This process is crucial in 

identifying cavities with high precision, as seen through the 

model’s capacity to maintain structural details in varying cavity 

development stages. 

Fig. 8 illustrates the dataset preparation, training, and 

evaluation pipeline for predicting subsurface cavities using 

the KIT-GPR framework. The dataset includes 200 

 

 

 

geometry cases, with 50 cases for each stage of cavity 

development: Initial, Intermediate, Dangerous-Collapse 

(Critical), and Dangerous-Collapse (Damaged). Before 

training, the dataset was shuffled 10 times and split into 

training, validation, and testing sets to ensure balanced 

learning. The input consists of B-scan images and 

corresponding geometries, which are processed by two deep 

learning models: a Fully Convolutional Network (FCN) for 

pixel-level segmentation and a Faster Region-Based 

Convolutional Neural Network (Faster-RCNN) for object 

detection. The FCN predicts subsurface geometry, while 

Faster-RCNN identifies the severity of cavity-related risks.  

 

Fig. 7 KIT-GPR Convolutional and Deconvolutional Network for B-Scan to Predicted Geometry 

 

Fig. 8 Schematic of the ANN training process and end user GUI program 
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The evaluation phase compares the predicted geometry with 

actual data to assess the model's accuracy. This process 

demonstrates the effectiveness of integrating FCNs for 

geometry prediction and Faster-RCNN for object detection 

in identifying and classifying cavity structures beneath road 

infrastructure. Fig. 9 presents four cases of cavity detection, 

highlighting the model’s performance across varying cavity 

sizes and configurations that represent different stages of 

cavity development.  

In Case (a), the framework successfully detects a well-

defined cavity and categorizes it as “Collapse - Dangerous.” 

The FCN accurately captures the geometry of the cavity, 

closely matching the ground truth. The Faster-RCNN model 

detects this cavity with a confidence score of 65.93%, 

reflecting strong reliability in identifying it as a significant 

structural threat. This case demonstrates the model’s 

effectiveness in detecting well-formed cavities with clear 

structural features.  

 
 

Case (b) presents a more irregular cavity shape, 

introducing a slight noise in the FCN prediction around the 

edges. Despite this, the Faster-RCNN model successfully 

categorizes the cavity as “Collapse-Dangerous” with a 

confidence score of 61.82%. The decreased score reflects 

the increased complexity of the cavity’s irregular shape, yet 

the model still effectively identifies its high-risk status. This 

case highlights how cavity irregularities can slightly impact 

detection accuracy but still allow for successful 

classification. 

In Case (c), the model struggles with cavity detection 

and classification, leading to a failed detection. This case 

represents the initial stage of cavity development, where 

multiple small cavities are clustered together. The early-

stage formation challenges the model’s ability to distinguish 

individual cavities within the cluster. The FCN captures the 

clustered arrangement with some boundary blending, while 

the Faster-RCNN model detects only one cavity within the 

 

 

Fig. 9 Comparison of B-scan, Ground truth, predicted geometry, and Object detection by Faster-RCNN 

29



 

Sayali Pangavhane, Dinh-Viet Le and Gyu-Hyun Go 

 

cluster and labels it as “Intermediate” with a confidence 

score of 60.87%. The lower score reflects the difficulty of 

detecting cavities in early development stages, where 

anomalies may not be fully formed or distinct, ultimately 

resulting in a failed detection of the entire structure.  

Case (d) presents a solitary cavity in an intermediate 

stage with distinct edges. Although the FCN prediction 

aligns with the ground truth in terms of geometry, the 

Faster-RCNN model categorizes this cavity as 

“Intermediate” with a confidence score of 66.18%, 

indicating moderate certainty. However, the model fails to 

recognize the full structural complexity of the cavities, 

which contributes to this case being classified as a failed 

detection. The lack of precision makes it difficult for the 

Faster-RCNN to accurately assess the danger stage, leading 

to misclassifications. These errors highlight the model’s 

limitations in handling more advanced and irregular cavity 

formations. One notable challenge encountered during the 

study was the use of manually-generated anomalies in the 

dataset. While this approach allowed for a controlled 

representation of various cavity stages, it also introduced 

additional noise in certain cases. The manual creation process 

sometimes led to irregular shapes and boundary variations, 

which could deviate from natural cavity formations and 

complicate the model’s ability to accurately identify the 

anomaly stage. This added noise occasionally affected the 

FCN’s precision in boundary delineation and the Faster-R-

CNN's occasionally affected the FCN’s precision in boundary 

delineation and the Faster-RCNN’s classification, especially in 

cases where anomaly shapes were less distinct or fragmented. 

The challenges observed in Cases (c) and (d) suggest a 

need for further refinement in model architecture or training 

data. Specifically, the FCN’s segmentation performance 

could benefit from additional tuning or regularization 

techniques to improve boundary accuracy. Furthermore, 

expanding the training dataset to include a broader variety 

of cavity shapes and sizes may help the model generalize 

better to complex anomalies. These improvements could 

enhance the model’s ability to accurately predict the stage 

and severity of cavities in real-world subsurface structures. 

The integration of FCN and Faster-RCNN in the KIT-GPR 

framework demonstrates a promising approach to 

automated subsurface imaging. The FCN model, with its 

high-resolution segmentation, and the Faster-RCNN model, 

with its ability to detect and classify dangerous cavities, 

offer a robust solution for early anomaly detection. This 

combination enables infrastructure engineers to identify, 

classify, and prioritize maintenance tasks for subsurface 

cavities before they escalate into critical structural issues. 

The high classification confidence scores associated with 

each stage underscore the model’s potential in real-time 

monitoring applications, offering substantial advancements 

over traditional GPR analysis. 

 

 
4. Conclusions 
 

This research shows a comprehensive framework to 

enhance subsurface anomaly detection and classification 

within road infrastructure using GPR simulations. The KIT- 

GPR program was utilized for dataset generation, 

integrating Fully Convolutional Networks for precise pixel-

wise segmentation and Faster-RCNN for automated 

classification of anomaly severity. The main conclusions 

obtained from the study are as follows: 

• The KIT-GPR framework demonstrated effectiveness 

in detecting early-stage cavities, with the FCN reliably 

replicating ground truth geometries for various cavity 

stages. This capability underscores the potential of 

FCN for precise anomaly mapping, essential for early 

intervention and maintenance planning in road 

infrastructure. 

• Integrating Faster-RCNN into the framework provided 

an automated classification layer, enabling accurate 

identification of both initial and intermediate cavity 

stages. This advancement contributes to proactive risk 

assessment by categorizing cavities based on severity, 

which is crucial for prioritizing maintenance tasks. 

• Challenges emerged with manually created anomalies, 

which introduced noise and irregularities, sometimes 

impacting prediction accuracy. Additionally, the model 

encountered limitations with complex cavity shapes in 

advanced stages, particularly in Cases (c) and (d), 

where both FCN segmentation and Faster-RCNN 

classification faced accuracy challenges. These findings 

highlight the need for refining dataset quality and 

model parameters to improve robustness against 

complex, late-stage anomalies. 

• Future work focuses on enhancing model performance 

by incorporating more diverse training samples, 

particularly those capturing the progressive expansion 

of cavities and the deformation of surrounding soil. 

Studying these dynamic changes could improve the 

model’s ability to predict cavity evolution at different 

stages, enabling early intervention before significant 

structural damage occurs. Additionally, fine-tuning 

model parameters could bolster detection accuracy, 

paving the way for a real-time GPR-based anomaly 

monitoring system. This advancement has the potential 

to revolutionize infrastructure assessment, leading to 

proactive maintenance strategies and improved road 

safety.  
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